Multiple Neural Network Model Interpolation

نویسندگان

  • Daniel C. Chin
  • Albert C. Biondo
چکیده

This paper presents an efficient method for extracting a multi-model interpolation function from a nonlinear system. The multi-model interpolation function consists of couple simplified time-varying models in neural-network structure to dynamically approximate the nature of the physical phenomena to be interpolated and extrapolated. The purpose of using the multi-model interpolation function is to perform a real-time approximation. This paper demonstrates the interpolation in a simulated environment, the underwater acoustic transmission loss generated from the NAVY-standard acoustic propagation-loss model ASTRAL, which is not suited to real-time operation. The interpolation includes initial learning period that is on the order of 20 minutes (more or less time depends on the size of the parameter intervals and the complexity of the ocean environment), and the subsequent interpolation speed will be measured in fractions of a second, a several orders-of-magnitude improvement over conventional calculations. In addition, for the example presented here, the interpolation error is within 1% of the actual transmission-loss value in a root-mean-square (RMS) sense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

متن کامل

The optimized model of factors effecting on the Merger and Acquisition from multiple dimensions with neural network approach.

Nowadays, firms apply the merger and acquisition strategy for gaining synergy, increasing the wealth of stockholders, economics of scales, enhancing efficiency, increasing the ability to research and develop, developing the firm and decreasing the risk. Developing an optimized model with the ability to identify the effective variables on the merger and acquisition process has a significant ...

متن کامل

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

Comparison of Artificial Neural Network and Multiple Regression Analysis for Prediction of Fat Tail Weight of Sheep

A comparative study of artificial neural network (ANN) and multiple regression is made to predict the fat tail weight of Balouchi sheep from birth, weaning and finishing weights. A multilayer feed forward network with back propagation of error learning mechanism was used to predict the sheep body weight. The data (69 records) were randomly divided into two subsets. The first subset is the train...

متن کامل

Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System

We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...

متن کامل

Natural Gas Price Forecasting using Kriging Interpolation Technique and Neldar-Mead Optimization Algorithm

The prediction of economic series with high volatility and high uncertainty - such as natural gas prices - is always a challenge in econometric models, because the use of traditional linear modeling models does not allow us to predict complex and nonlinear time series. Regarding the prediction of natural gas prices,  findings point to superiority of the neural network compared to regression mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002